Pages

Thursday, 2 February 2023

Exp2: Running a MapReduce WordCount Example in STANDALONE MODE.

Title:
Running a MapReduce WordCount Example in STANDALONE MODE.
 
Objective:
Standalone mode is the default mode of operation of Hadoop and it runs on a single node ( a node is your machine) can be used to run the Word count program.
 
Requirements:
software Requirements:
Oracle Virtual Box
Ubuntu Desktop OS (64bit)
Hadoop-3.1.0
OpenJdk version-8
 
Hardware Requirements:
Minimum RAM required: 4GB (Suggested: 8GB)
Minimum Free Disk Space: 25GB
Minimum Processor i3 or above

Analysis:
By default, Hadoop is configured to run in a non-distributed or standalone mode, as a single Java process. There are no daemons running and everything runs in a single JVM instance. HDFS is not used. We need to create a input directory and provided with a sample text file as input to count the number each word occurrences using MapReduce Program in StandAlone Mode.
 
Flow Chart of Map Reduce
To following diagram summarizes the flow of Map reduce algorithm
 
Algorithm:
1. The input data can be divided into n number of chunks depending upon the amount of
data and processing capacity of individual unit.
2. Next, it is passed to the mapper functions. Please note that all the chunks are processed
simultaneously at the same time, which embraces the parallel processing of data.
3. After that, shuffling happens which leads to aggregation of similar patterns.
4. Finally, reducers combine them all to get a consolidated output as per the logic.
5. This algorithm embraces scalability as depending on the size of the input data, we can keep increasing the number of the parallel processing units. 
 
 
Example:
What is MapReduce in Hadoop? Big Data Architecture 
 

Installation steps:

bda@bda-VirtualBox:~$ ls
Desktop    Downloads         hadoop-3.3.4         Music  output1   Public   Templates
Documents  examples.desktop  hadoop-3.3.4.tar.gz  out2   Pictures  sam.txt  Videos

bda@bda-VirtualBox:~$ cd /usr/lib/hadoop3/

bda@bda-VirtualBox:/usr/lib/hadoop3$ ls
bin  etc  include  lib  libexec  LICENSE-binary  licenses-binary  LICENSE.txt  NOTICE-binary  NOTICE.txt  README.txt  sbin  share

bda@bda-VirtualBox:/usr/lib/hadoop3$ cd bin/

bda@bda-VirtualBox:/usr/lib/hadoop3/bin$ ls
container-executor  hadoop  hadoop.cmd  hdfs  hdfs.cmd  mapred  mapred.cmd  oom-listener  test-container-executor  yarn  yarn.cmd

bda@bda-VirtualBox:/usr/lib/hadoop3/bin$ ./hadoop
                               Or
bda@bda-VirtualBox:/usr/lib/hadoop3$ bin/hadoop
bda@bda-VirtualBox:/usr/lib/hadoop3$ cd

bda@bda-VirtualBox:~$ ls
 
bda@bda-VirtualBox:~$ mkdir mapin
 
bda@bda-VirtualBox:~$ cd mapin
 
bda@bda-VirtualBox:~/mapin$ cat > input.txt
welcome to hadoop
class hadoop is
good hadoop is
bad
 
bda@bda-VirtualBox:~/mapin$ ls
input.txt
bda@bda-VirtualBox:~/mapin$ cat input.txt
welcome to hadoop
class hadoop is
good hadoop is
bad
 
bda@bda-VirtualBox:~$ cd /usr/lib/hadoop3/
bda@bda-VirtualBox:/usr/lib/hadoop3$ /usr/lib/hadoop3/bin/hadoop jar /usr/lib/hadoop3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar grep ~/mapin/input.txt ~/mapout 'hadoop[.]*'
 
bda@bda-VirtualBox:/usr/lib/hadoop3$ cd
bda@bda-VirtualBox:~$ ls
Desktop    Downloads         hadoop-3.3.4         mapin   Music     Public   Templates
Documents  examples.desktop  hadoop-3.3.4.tar.gz  mapout  Pictures  sam.txt  Videos
 
bda@bda-VirtualBox:~$ cd mapout/
 
bda@bda-VirtualBox:~/mapout$ ls
part-r-00000  _SUCCESS
 
bda@bda-VirtualBox:~/mapout$ cat part-r-00000
3    hadoop

Output:



Limitations:
Standalone mode is the default mode of operation of Hadoop and it runs on a single node ( a node is your machine). HDFS and YARN doesn't run on standalone mode.

Conclusion:

Standalone Mode is the default operation of Hadoop Eco System where the hadoop services will run in the Single JVM. As in this experiment basic Java installation and extraction of the Hadoop files are sufficient to run the Hadoop services and Mapreduce wordcount Program.


No comments:

Post a Comment

Friends-of-friends-Map Reduce program

Program to illustrate FOF Map Reduce: import java.io.IOException; import java.util.*; import org.apache.hadoop.conf.Configuration; import or...